The mDOT Center

Transforming health and wellness via temporally-precise mHealth interventions
mDOT@MD2K.org
901.678.1526
 

Publications

mDOT Center > Resources > Publications
  • Md Azim Ullah, Soujanya Chatterjee, Christopher P. Fagundes, Cho Lam, Inbal Nahum-Shani, James M. Rehg, David W. Wetter, and Santosh Kumar. 2022. mRisk: Continuous Risk Estimation for Smoking Lapse from Noisy Sensor Data with Incomplete and Positive-Only Labels. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 3, Article 143 (September 2022), 29 pages.

  • Meet P. Vadera, Colin Samplawski, and Benjamin M. Marlin. 2023. Uncertainty Quantification Using Query-Based Object Detectors. In Computer Vision – ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VIII. Springer-Verlag, Berlin, Heidelberg, 78–93. DOI: 10.1007/978-3-031-25085-9_5.

  • Moore, I. M., Nofshin, E., Swaroop, S., Murphy, S., Doshi-Velez, F., & Pan, W. (2025). When and why hyperbolic discounting matters for reinforcement learning interventions. Reinforcement Learning Journal.

  • Moreno, Z. Wu, S. Nagesh, W. Dempsey, and J. M. Rehg. Kernel Multimodal Continuous Attention. Proceedings 36th Conference on Neural Information Processing Systems (NeurIPS), 2022. Accepted for publication.

  • Nahum-Shani I, Greer ZM, Trella AL, Zhang KW, Carpenter SM, Ruenger D, Elashoff D, Murphy SA, Shetty V. Optimizing an Aadaptive Digital Oral Health Intervention for Promoting Oral Self-Care Behaviors: Micro-Randomized Trial Protocol. Contemp Clin Trials. 2024 Jan 31:107464. doi: 10.1016/j.cct.2024.107464. Epub ahead of print. PMID: 38307224.

  • Nahum-Shani I, Potter LN, Lam CY, Yap J, Moreno A, Stoffel R, Wu Z, Wan N, Dempsey W, Kumar S, Ertin E, Murphy SA, Rehg JM, Wetter DW. The Mobile Assistance for Regulating Smoking (MARS) Micro-Randomized Trial Design Protocol. Contemporary clinical trials. 2021 July 24:106513. PubMed PMID: 34314855; DOI: 10.1016/j.cct.2021.106513.

  • Nahum-Shani I, Rabbi M, Yap J, Philyaw-Kotov ML, Klasnja P, Bonar EE, Cunningham RM, Murphy SA, Walton MA. Translating Strategies for Promoting Engagement in Mobile Health: A Proof-of-Concept Microrandomized Trial. Health Psychol. 2021 Dec;40(12):974-987. doi: 10.1037/hea0001101. Epub 2021 Nov 4. PMID: 34735165; PMCID: PMC8738098.

  • Nahum-Shani I, Shaw SD, Carpenter SM, Murphy SA, Yoon C. Engagement in Digital Interventions. Am Psychol. 2022 Mar 17;. doi: 10.1037/amp0000983. [Epub ahead of print] PubMed PMID: 35298199; NIHMSID:NIHMS1800077.

  • Nahum-Shani, I., & Murphy, S. (2025). Just-in-time adaptive interventions: Where are we now and what is next? Annual Review of Psychology, 77.

  • Nahum-Shani, Inbal. Wetter, David. Murphy, Susan. Adapting Just-in-Time Interventions to Vulnerability and Receptivity: Conceptual and Methodological Considerations. 2023. 10.1016/B978-0-323-90045-4.00012-5.

  • Neupane, S., Dongre, P., Gracanin, D., & Kumar, S. (2025). Wearable meets LLM for stress management: A duoethnographic study integrating wearable-triggered stressors and LLM chatbots for personalized interventions. Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 1–8.

  • Neupane, S., Saha, M., Almeida, D. M., & Kumar, S. (2025). How many times do people usually experience different kinds of stressors each day? Proceedings of the 10th International Workshop on Mental Health and Well-being at ACM UbiComp.

  • Nguyen, I., Han, L., Dambly, B., Kazemi, A., Kogan, M., Inman, C., Srivastava, M., & Garcia, L. (2025). Detecting context shifts in the human experience using multimodal foundation models. Proceedings of the 23rd ACM Conference on Embedded Networked Sensor Systems, 620–621.

  • Ouyang, X., Wu, J., Kimura, T., Lin, Y., Verma, G., Abdelzaher, T., & Srivastava, M. (2025). Mmbind: Unleashing the potential of distributed and heterogeneous data for multimodal learning in IoT. Proceedings of the 23rd ACM Conference on Embedded Networked Sensor Systems, 491–503.

  • Liao, Z. Qi, R. Wan, P. Klasnja, S. MurphyBatch Policy Learning in Average Reward Markov Decision Processes. Annals of Statistics. 2022 Sept 17.

  • Psihogios AM, Rabbi M, Ahmed A, McKelvey ER, Li Y, Laurenceau JP, Hunger SP, Fleisher L, Pai AL, Schwartz LA, Murphy SA, Barakat LP. Understanding Adolescent and Young Adult 6- Mercaptopurine Adherence and mHealth Engagement During Cancer Treatment: Protocol for Ecological Momentary Assessment. JMIR research protocols. 2021 October 22;10(10):e32789. PubMed PMID: 34677129; PubMed Central PMCID: PMC8571686; DOI: 10.2196/32789.

  • Psihogios, A. M., El-Khatib, A., Matos, K., Rabbi, M., Rossoff, J., Dinner, S., Zeng, K., Picos, R., Ahmed, A., Patel, E. M., Fleisher, L., Hunger, S. P., Pai, A., Laurenceau, J. P., Rini, C., Barakat, L. P., Schwartz, L. A., Murphy, S., & Yanez, B. (2025). Human-centered design of a personalized digital health intervention to improve oral chemotherapy adherence in adolescents and young adults with hematologic cancers. Pediatric Blood & Cancer, 72(8), e31756.

  • Qian T, Klasnja P, Murphy SA. Linear Mixed Models with Endogenous Covariates: Modeling Sequential Treatment Effects with Application to a Mobile Health Study. Statistical science : a review journal of the Institute of Mathematical Statistics. 2020;35(3):375-390. PubMed PMID: 33132496; PubMed Central PMCID: PMC7596885; DOI: 10.1214/19-sts720.

  • Qian T, Walton AE, Collins LM, Klasnja P, Lanza ST, Nahum-Shani I, Rabbi M, Russell MA, Walton MA, Yoo H, Murphy SA. The Microrandomized Trial for Developing Digital Interventions: Experimental Design and Data Analysis Considerations. Psychol Methods. 2022 Jan 13;. doi: 10.1037/met0000283. [Epub ahead of print] PubMed PMID: 35025583; PubMed Central PMCID: PMC9276848.

  • Qian T, Yoo H, Klasnja P, Almirall D, Murphy SA. Estimating Time-Varying Causal Excursion Effect in Mobile Health with Binary Outcomes. Biometrika. 2021 Sep;108(3):507-527. doi: 10.1093/biomet/asaa070. Epub 2020 Sep 4. PMID: 34629476; PMCID: PMC8494142.

  • Quan, P., Han, L., Hong, D., Berges, M., & Srivastava, M. (2024). Reimagining time series foundation models: Metadata and state-space model perspectives. Proceedings of the NeurIPS Workshop on Time Series in the Age of Large Models.

  • Quan, P., Ouyang, X., Jeyakumar, J. V., Wang, Z., Xing, Y., & Srivastava, M. (2025). Sensorbench: Benchmarking LLMs in coding-based sensor processing. Proceedings of the 26th International Workshop on Mobile Computing Systems and Applications, 25–30.

  • Quan, P., Wang, B., Yang, K., Han, L., & Srivastava, M. (2025). Benchmarking spatiotemporal reasoning in LLMs and reasoning models: Capabilities and challenges. arXiv preprint arXiv:2505.11618.

  • S.N. Shukla, B.M. Marlin. Heteroscedastic Temporal Variational Autoencoder For Irregularly Sampled Time Series. In Proceedings of the International Conference on Learning Representations. 2022.

  • Saengkyongam, S., Pfister, N., Klasnja, P., Murphy, S., and Peters, J., Effect-Invariant Mechanisms for Policy Generalization.  2023. DOI: 10.48550/arXiv.2306.10983.

  • Saghafian S, Murphy SA. Innovative Health Care Delivery: The Scientific and Regulatory Challenges in Designing mHealth Interventions. NAM perspectives. 2021;2021. PubMed PMID: 34611601; PubMed Central PMCID: PMC8486421; DOI: 10.31478/202108b.

  • Saha, M., Xu, M. A., Mao, W., Neupane, S., Rehg, J. M., & Kumar, S. (2025). Pulse-PPG: An open-source field-trained PPG foundation model for wearable applications across lab and field settings. Proceedings of the ACM on Interactive, Mobile, Wearable, and Ubiquitous Technologies (IMWUT) & UbiComp 2025.

  • Saha, Swapnil Sayan, Sandeep Singh Sandha, and Mani Srivastava. Machine Learning for Microcontroller-Class Hardware–A Review. arXiv preprint arXiv:2205.14550 (2022). Accepted for IEEE J. Sensors ’22.

  • Saha, Swapnil Sayan, Sandeep Singh Sandha, Luis Antonio Garcia, and Mani Srivastava. Tinyodom: Hardware-Aware Efficient Neural Inertial Navigation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 2 (2022): 1-32. NIHMS1839164.

  • Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, and Mani Srivastava. THIN-Bayes: Platform-Aware Machine Learning for Low-End IoT Devices. Poster at the tinyML Summit 2022.

  • Saha, Swapnil Sayan, Sandeep Singh Sandha, Siyou Pei, Vivek Jain, Ziqi Wang, Yuchen Li, Ankur Sarker, and Mani Srivastava. Auritus: An Open-Source Optimization Toolkit for Training and Development of Human Movement Models and Filters Using Earables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 2 (2022): 1-34. NIHMS1839165.

  • Saleheen, Nazir, Md Azim Ullah, Supriyo Chakraborty, Deniz S. Ones, Mani Srivastava, and Santosh Kumar. WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 2807-2823. 2021. NIHMS1839082.

  • Sameer Neupane, Mithun Saha, Nasir Ali, Timothy Hnat, Shahin Alan Samiei, Anandatirtha Nandugudi, David M. Almeida, and Santosh Kumar. 2024. Momentary Stressor Logging and Reflective Visualizations: Implications for Stress Management with Wearables. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 27 pages. DOI: 10.1145/3613904.3642662.

  • Shukla SN, Marlin BM. A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series. 2020. arXiv preprint arXiv:2012.00168.

  • Steven, A., El Mistiri, M., Hekler, E., Klasnja, P., Marlin, B., Pavel, M., Spruijt-Metz, D., & Rivera, D. E. (2024). Modeling engagement with a digital behavior change intervention (HeartSteps II): An exploratory system identification approach. Journal of Biomedical Informatics, 158, 104721.

  • Sugavanam, N., & Ertin, E. (2025). Differentiable Gaussian splatting models of limited persistence scattering in SAR backscatter measurements. Proceedings of the IEEE International Radar Conference (RADAR), 1–6.

  • Sugavanam, N., & Ertin, E. (2025). Joint target recovery and blind calibration of phased-array radar using deep unrolled model. Proceedings of the IEEE International Radar Conference (RADAR), 1–6. IEEE.

  • Swapnil Sayan Saha, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. 2023. TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning. ACM Trans. Embed. Comput. Syst. Just Accepted (May 2023). https://doi.org/10.1145/3603171.

  • Tomkins S, Liao P, Klasnja P, Murphy S. IntelligentPooling: Practical Thompson Sampling for mHealth. Mach Learn. 2021 Sep;110(9):2685-2727. doi: 10.1007/s10994-021-05995-8. Epub 2021 Jun 21. PMID: 34621105; PMCID: PMC8494236.

  • Trella AL, Zhang KW, Nahum-Shani I, Shetty V, Doshi-Velez F, Murphy SA. Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines. Algorithms. 2022; 15(8). NIHMSID: NIHMS1825651.

  • Trella AL, Zhang KW, Nahum-Shani I, Shetty V, Doshi-Velez F, Murphy SA. Reward Design For An Online Reinforcement Learning Algorithm Supporting Oral Self-Care. Proc Innov Appl Artif Intell Conf. 2023 Jun 27;37(13):15724-15730. doi: 10.1609/aaai.v37i13.26866. PMID: 37637073; PMCID: PMC10457015.

  • Trella, A. L., Dempsey, W., Gazi, A. H., Xu, Z., Doshi-Velez, F., & Murphy, S. A. (2025). Non-stationary latent auto-regressive bandits. Reinforcement Learning Journal.

  • Trella, A. L., Ghosh, S., Bonar, E., Coughlin, L., Doshi-Velez, F., Guo, Y., Hung, P., Nahum-Shani, I., Shetty, V., Walton, M., Yan, I., Zhang, K. W., & Murphy, S. (2025). Effective monitoring of online decision-making algorithms in digital intervention implementation. Manuscript submitted for publication.

  • Trella, A. L., Zhang, K. W., Jajal, H., Nahum-Shani, I., Shetty, V., Doshi-Velez, F., & Murphy, S. A. (2025). A deployed online reinforcement learning algorithm in an oral health clinical trial. Proceedings of the AAAI Conference on Artificial Intelligence, 39(28), 28792–28800.

  • Tung, K., Torre, S.D., Mistiri, M.E., Braganca, R.B., Hekler, E.B., Pavel, M., Rivera, D.E., Klasnja, P., Spruijt-Metz, D., & Marlin, B.M. (2022). BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data. Accepted at IEEE/ACM international conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2022.  ArXiv, abs/2209.05581.

  • Vinci, C., Sutton, S. K., Yang, M.-J., Jones, S. R., Kumar, S., & Wetter, D. W. (2025). Proximal effects of a just-in-time adaptive intervention for smoking cessation with wearable sensors: Microrandomized trial. JMIR mHealth and uHealth, 13(1), e55379.

  • Walton, M., Nahum-Shani, I., Campbell, M., Tomlinson, D. C., Florimbio, A. R., Ghosh, S., Guo, Y., Hung, P., Newman, M. W., Lin, J. J., Qian, T., Dziak, J., Pan, H., Zhang, K. W., Zimmerman, L., Bonar, E., Murphy, S., & Coughlin, L. N. (2025). A micro-randomized trial of a mobile intervention for emerging adults with regular cannabis use. Manuscript submitted for publication.

  • Wang Z, Wang B, Srivastava M. Poster Abstract: Protecting User Data Privacy with Adversarial Perturbations. IPSN. 2021 May;2021:386-387. doi: 10.1145/3412382.3458776. PMID: 34651144; PMCID: PMC8513393.

  • Wang, Z., Hua, D., Jiang, W., Xing, T., Chen, X., & Srivastava, M. (2025). MobiVital: Self-supervised quality estimation for UWB-based contactless respiration monitoring. Proceedings of the 3rd International Workshop on Human-Centered Sensing, Modeling, and Intelligent Systems, 70–75.

  • Wenqiang Chen, Ziqi Wang, Pengrui Quan, Zhencan Peng, Shupei Lin, Mani Srivastava, Wojciech Matusik, and John Stankovic. 2023. Robust Finger Interactions with COTS Smartwatches via Unsupervised Siamese Adaptation. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (UIST ’23). Association for Computing Machinery, New York, NY, USA, Article 25, 1–14. DOI: 10.1145/3586183.3606794.

  • Wu, J., Yang, K., Kaplan, L., & Srivastava, M. (2025). ADMN: A layer-wise adaptive multimodal network for dynamic input noise and compute resources. arXiv preprint arXiv:2502.07862.

  • Xu, M. A., Narain, J., Darnell, G., Hallgrimsson, H., Jeong, H., Forde, D., Fineman, R., Raghuram, K. J., Rehg, J. M., & Ren, S. (2025). RelCon: Relative contrastive learning for a motion foundation model for wearable data. Proceedings of the International Conference on Learning Representations (ICLR), Singapore.

  • Xu, M. A., Rehg, J. M., Liu, X., & McDuff, D. (2025). LSM-2: Learning from incomplete wearable sensor data. arXiv preprint arXiv:2506.05321.

  • Xu, Z., Jajal, H., Choi, S. W., Nahum-Shani, I., Shani, G., Psihogios, A. M., Hung, P., & Murphy, S. A. (2025). Reinforcement learning on dyads to enhance medication adherence. Proceedings of the 23rd International Conference on Artificial Intelligence in Medicine (AIME-25).

  • Xu, Z., Zhang, K., & Murphy, S. (2025). The fallacy of minimizing cumulative regret in the sequential task setting. Manuscript submitted for publication.

  • Chang, N. Sugavanam, E. Ertin. Removing Antenna Effects using an Invertible Neural Network for Improved Estimation of Multilayered Tissue Profiles using UWB Radar.2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Portland, OR, USA, 2023, pp. 53-54, DOI: 10.23919/USNC-URSI54200.2023.10289171.