
CP 1: Novel Use of mHealth Data to Identify States of Vulnerability and Receptivity to JITAIs
CP / Smoking Cessation / TR&D1 / TR&D2 / TR&D3
Algorithms in Decision Support Systems
July 22, 2022
reinforcement learning, online learning, mobile health, algorithm design, algorithm evaluation
Online RL faces challenges like real-time stability and handling complex, unpredictable environments; to address these issues, the PCS framework originally used in supervised learning is extended to guide the design of RL algorithms for such settings, including guidelines for creating simulation environments, as exemplified in the development of an RL algorithm for the mobile health study Oralytics aimed at enhancing tooth-brushing behaviors through personalized intervention messages.
Advances in Neural Information Processing Systems
December 2021
contextual bandit algorithms, confidence intervals, adaptively collected data, causal inference
We develop theory justifying the use of M-estimators—which includes estimators based on empirical risk minimization as well as maximum likelihood—on data collected with adaptive algorithms, including (contextual) bandit algorithms.
The Annals of Statistics
December 21, 2022
average reward, doubly robust estimator, Markov Decision Process, policy optimization
We consider the batch (off-line) policy learning problem in the infinite horizon Markov decision process. Motivated by mobile health applications, we focus on learning a policy that maximizes the long-term average reward. We propose a doubly robust estimator for the average reward and show that it achieves semiparametric efficiency. Further, we develop an optimization algorithm to compute the optimal policy in a parameterized stochastic policy class. The performance of the estimated policy is measured by the difference between the optimal average reward in the policy class and the average reward of the estimated policy and we establish a finite-sample regret guarantee. The performance of the method is illustrated by simulation studies and an analysis of a mobile health study promoting physical activity.
We consider batch policy learning in an infinite horizon Markov Decision Process, focusing on optimizing a policy for long-term average reward in the context of mobile health applications.
IEEE International Conference on Digital Health (ICDH)
July 10, 2022
learning systems, optimized production technology, behavioral sciences, electronic healthcare, decision trees
To promote healthy behaviors, many mobile health applications provide message-based interventions, such as tips, motivational messages, or suggestions for healthy activities. Ideally, the intervention policies should be carefully designed so that users obtain the benefits without being overwhelmed by overly frequent messages. As part of the HeartSteps physical-activity intervention, users receive messages intended to disrupt sedentary behavior. HeartSteps uses an algorithm to uniformly spread out the daily message budget over time, but does not attempt to maximize treatment effects. This limitation motivates constructing a policy to optimize the message delivery decisions for more effective treatments. Moreover, the learned policy needs to be interpretable to enable behavioral scientists to examine it and to inform future theorizing. We address this problem by learning an effective and interpretable policy that reduces sedentary behavior. We propose Optimal Policy Trees + (OPT+), an innovative batch off-policy learning method, that combines a personalized threshold learning and an extension of Optimal Policy Trees under a budget-constrained setting. We implement and test the method using data collected in HeartSteps V2N3. Computational results demonstrate a significant reduction in sedentary behavior with a lower delivery budget. OPT + produces a highly interpretable and stable output decision tree thus enabling theoretical insights to guide future research.
Online RL faces challenges like real-time stability and handling complex, unpredictable environments; to address these issues, the PCS framework originally used in supervised learning is extended to guide the design of RL algorithms for such settings, including guidelines for creating simulation environments, as exemplified in the development of an RL algorithm for the mobile health study Oralytics aimed at enhancing tooth-brushing behaviors through personalized intervention messages.
Psychiatry: Interpersonal and Biological Processes
July 18, 2022
suicide, self-injury, just-in-time adaptive interventions
The suicide rate (currently 14 per 100,000) has barely changed in the United States over the past 100 years. There is a need for new ways of preventing suicide. Further, research has revealed that suicidal thoughts and behaviors and the factors that drive them are dynamic, heterogeneous, and interactive. Most existing interventions for suicidal thoughts and behaviors are infrequent, not accessible when most needed, and not systematically tailored to the person using their own data (e.g., from their own smartphone). Advances in technology offer an opportunity to develop new interventions that may better match the dynamic, heterogeneous, and interactive nature of suicidal thoughts and behaviors. Just-In-Time Adaptive Interventions (JITAIs), which use smartphones and wearables, are designed to provide the right type of support at the right time by adapting to changes in internal states and external contexts, offering a promising pathway toward more effective suicide prevention. In this review, we highlight the potential of JITAIs for suicide prevention, challenges ahead (e.g., measurement, ethics), and possible solutions to these challenges.
In this review, we highlight the potential of JITAIs for suicide prevention, challenges ahead (e.g., measurement, ethics), and possible solutions to these challenges.
American Psychologist
March 17, 2022
engagement, digital interventions, affect, motivation, attention
The notion of “engagement,” which plays an important role in various domains of psychology, is gaining increased currency as a concept that is critical to the success of digital interventions. However, engagement remains an ill-defined construct, with different fields generating their own domain-specific definitions. Moreover, given that digital interactions in real-world settings are characterized by multiple demands and choice alternatives competing for an individual’s effort and attention, they involve fast and often impulsive decision making. Prior research seeking to uncover the mechanisms underlying engagement has nonetheless focused mainly on psychological factors and social influences and neglected to account for the role of neural mechanisms that shape individual choices. This paper aims to integrate theories and empirical evidence across multiple domains to define engagement and discuss opportunities and challenges to promoting effective engagement in digital interventions. We also propose the AIM-ACT framework, which is based on a neurophysiological account of engagement, to shed new light on how in-the-moment engagement unfolds in response to a digital stimulus. Building on this framework, we provide recommendations for designing strategies to promote engagement in digital interventions and highlight directions for future research.
This paper focuses on defining and understanding engagement in digital interventions by combining various theories and evidence from different domains. It introduces the AIM-ACT framework, which explains how engagement happens in response to digital stimuli based on neurophysiological principles and offers suggestions for designing effective engagement strategies in digital interventions.
Psychological Methods
January 13, 2022
December 2021
engagement, mobile health (mHealth), Micro-Randomized Trial (MRT), reciprocity, reinforcement
Contemporary Clinical Trials
engagement, Micro-randomized trial (MRT), mobile health (mHealth), self-regulatory strategies, smoking cessation
November 2021
Smoking is the leading preventable cause of death and disability in the U.S. Empirical evidence suggests that engaging in evidence-based self-regulatory strategies (e.g., behavioral substitution, mindful attention) can improve smokers’ ability to resist craving and build self-regulatory skills. However, poor engagement represents a major barrier to maximizing the impact of self-regulatory strategies. This paper describes the protocol for Mobile Assistance for Regulating Smoking (MARS) – a research study designed to inform the development of a mobile health (mHealth) intervention for promoting real-time, real-world engagement in evidence-based self-regulatory strategies. The study will employ a 10-day Micro-Randomized Trial (MRT) enrolling 112 smokers attempting to quit. Utilizing a mobile smoking cessation app, the MRT will randomize each individual multiple times per day to either: (a) no intervention prompt; (b) a prompt recommending brief (low effort) cognitive and/or behavioral self-regulatory strategies; or (c) a prompt recommending more effortful cognitive or mindfulness-based strategies. Prompts will be delivered via push notifications from the MARS mobile app. The goal is to investigate whether, what type of, and under what conditions prompting the individual to engage in self-regulatory strategies increases engagement. The results will build the empirical foundation necessary to develop a mHealth intervention that effectively utilizes intensive longitudinal self-report and sensor-based assessments of emotions, context and other factors to engage an individual in the type of self-regulatory activity that would be most beneficial given their real-time, real-world circumstances. This type of mHealth intervention holds enormous potential to expand the reach and impact of smoking cessation treatments.
This paper describes the protocol for Mobile Assistance for Regulating Smoking (MARS) – a research study designed to inform the development of a mobile health (mHealth) intervention for promoting real-time, real-world engagement in evidence-based self-regulatory strategies.
Code for "Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-implementation Guidelines" Paper
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
0 forks.
2 stars.
0 open issues.
Recent commits:
Algorithms in Decision Support Systems
July 22, 2022
Python
Code to reproduce results for "Statistical Inference with M-Estimators on Adaptively Collected Data"
https://github.com/kellywzhang/adaptively_weighted_Mestimation
1 forks.
1 stars.
0 open issues.
Recent commits:
Advances in Neural Information Processing Systems
December 2021
Python
Shell
The material in this repository is a supplement to the manuscript titled `The Mobile-Assistance for Regulating Smoking (MARS) Micro-Randomized Trial Design Protocol' (Nahum-Shani, et al., 2021), submitted for consideration to the Journal of Contemporary Clinical Trials. The material include code and documentation for the power calculation for the Primary Aim and Secondary Aim of the trial.
https://github.com/jamieyap/power-calc-mars-mrt
1 forks.
0 stars.
0 open issues.
Recent commits:
Contemporary Clinical Trials
November 2021
R
Mobile health (mHealth) interventions have typically used hand-crafted decision rules that map from biomarkers of an individual’s state to the selection of interventions. Recently, reinforcement learning (RL) has emerged as a promising approach for online optimization of decision rules. Continuous, passive detection of the individual’s state using mHealth biomarkers enables dynamic deployment of decision rules at the right moment, i.e., as and when events of interest are detected from sensors. RL-based optimization methods that leverage this new capability created by sensor-based biomarkers, can enable the development and optimization of temporally-precise mHealth interventions, overcoming the significant limitations of static, one-size-fits-all decision rules. Such next generation interventions have the potential to lead to greater treatment efficacy and improved long-term engagement.
However, there exist several critical challenges to the realization of effective, real-world RL-based interventions including the need to learn efficiently based on limited interactions with an individual while accounting for longer-term effects of intervention decisions, (i.e., to avoid habituation and ensure continued engagement), and accommodating multiple intervention components operating at different time scales and targeting different outcomes. As a result, the use of RL in mHealth interventions has mostly been limited to very few studies using basic RL methods.
To address these critical challenges, TR&D2 builds on more precise biomarkers of context, including TR&D1 risk and engagement scores, to develop, evaluate, and disseminate robust and data efficient RL methods and tools. These methods continually personalize the selection, adaptation and delivery timing decision rules for core intervention components so as to maximize long-term therapeutic efficacy and engagement for every individual.
Assistant Professor
Applied Scientist II
Senior Research Scientist
Applied Scientist
Presentations by Susan Murphy
Presentations by Raaz Dwivedi (postdoctoral researcher)
Presentation by Kyra Gan (postdoctoral researcher)
Presentation by Shuangning Li (postdoctoral researcher)
Presentations by Kelly Zhang (graduate student)
Presentations by Anna Trella (graduate student)
Presentations by Xiang Meng (graduate student)
Presentation by Prasidh Chhabria (undergraduate student)
TR&D2 Lead
Lead PI, Center Director, TR&D1, TR&D2, TR&D3
Co-Investigator, TR&D1, TR&D2
Doctoral Student
Doctoral Student
Research and development by TR&D2 will significantly advance RL methodology for personalizing decision rules; in particular, with regards to online algorithms that personalize interventions for each user by appropriately pooling across multiple users.